Historical background and experiments

- 19th century, electromagnetic
 - classical mechanics
 - classical electrodynamics
 - classical statistical mechanics

- Determinism vs. Free Will
- Experiments (cannot be explained by classical physics)
 - atomic nuclear physics

1. Stable atomic model
 - classical electrodynamics
 - charge with acceleration \Rightarrow EM radiation
 - collapse of electrons \Rightarrow continuous spectrum
 - Bohr's hydrogen atom
 - ground state $E_i = E_{n_i}$, $E_1 = -13.6 \text{ eV}$
 - electron, discrete

2. Black body radiation (thermal radiation)
 - Thermal radiator
 - visible light $350 \text{ nm} - 700 \text{ nm}$
 - Planck's radiation law
 - Wien Displacement Law
 $\lambda \alpha T = b$ (1911 Nobel)
 - $E = \hbar \nu$
 - Planck constant
 - $\hbar = \frac{h}{2\pi}$, reduced Planck constant
 - Wien's law
 $\lambda = \frac{b}{T}$
 - CMB (Cosmic Microwave Background Radiation) 3 K
 - Penzias - Wilson, Bell Lab, 1978 Nobel

3. Photoelectric effect
 - $E = h(\nu - \nu_0)$
 - Einstein 1921 Nobel
 - photo-multiplier, scintillation detector

4. Compton scattering
 - 1923 Nobel with Wilson
 - E_0, E', E_x
 - $\cos \theta = \frac{m_e c^2}{E_0 - E'}$
 - momentum conservation $p_x = p_x' + \frac{m_e c^2}{\sqrt{1 - \frac{v^2}{c^2}}}$
 - energy conservation $h\nu + m_e c^2 = h\nu' + m_e c^2$
 - $\Delta \lambda = \lambda' - \lambda = \lambda_c (1 - \cos \theta)$, $\lambda_c = \frac{2.426 \times 10^{-6}}{\text{m}}$
 - Compton shift $\Delta \nu$
 - Compton wavelength